Minimum Number of Deletions Of
a String

Another string question in our coding interview questions collection. It seems that string is
getting really popular and many companies like Google, Facebook are asking about it in
recent interviews.

After a second thought, this makes sense in fact. String is a quite flexible data structure
and many concepts can be covered from a string problem like hash, memory and so on so
forth. In addition, it’s also a data structure you're gonna use almost every day. That’s why
many string interview questions are quite relevant to real world projects.

In this post, we’re going to talk about topics including string manipulation, dictionary,
time complexity etc. and in the end, I'll summarize several commonly used techniques as
before.

Question

Given a dictionary and a word, find the minimum number of deletions needed on the word
in order to make it a valid word.

For example, string “catn” needs one deletion to make it a valid word “cat” in the
dictionary. And string “bcatn” needs two deletions.

Dictionary has always been an interesting topic in string interview problems, which is part
of the reason I'd like to cover this here. Also, this question was asked by Google recently.

Dictionary

Given that dictionary is so common in coding interview questions that I'd like to briefly
summarize few strategies/techniques here.

e To store a dictionary, usually people will use data structures including Hash set, Trie
or maybe just array. You'd better understand pros and cons of each of them.

¢ You may choose to have a pre-processing step to read the whole dictionary and store
into your preferred data structure. Since once it’s loaded, you can use it as many
times as you want.

¢ If the dictionary is not too large, you may take the dictionary traverse time as
a constant.

Traverse dictionary

1

Created with FeedToBook.com - Original source: http://blog.gainlo.co/index.php/category/facebook-interview-questions/feed/

http://blog.gainlo.co/index.php/2016/04/29/minimum-number-of-deletions-of-a-string/
http://blog.gainlo.co/index.php/2016/04/29/minimum-number-of-deletions-of-a-string/
http://blog.gainlo.co/index.php/category/coding-interview-questions/
https://en.wikipedia.org/wiki/Trie

Coming back to this problem, if we assume the dictionary can be traversed quickly (not too
many entries), one approach is to go through each word in the dictionary, calculate the
number deletions required, and return the minimum one.

To calculate the number of deletions efficiently, we’ll use the common technique here. One
fact is that if a longer string can be transformed to a shorter one by deleting characters,
the longer string must contain all the characters of the smaller one in order. If you have
noticed this fact, then you should know that we only need to traverse the two strings once
in order to get the deletion number.

More specifically, we put two indices (L for the longer string, S for the shorter string)
pointing to beginning of each string. If the two characters under the indices are different,
move L forward by one character. If the two characters are same, move both forward. If
S comes to the end, it means the longer string contains all the characters in order, so the
number of deletion needed is just len(longer) - len(shorter).

Assuming the size of the dictionary is M and length of the given word is N, the time
complexity is O(MN) because for each word in the dictionary, we may need to iterate over
the given word.

Traverse the word

What if the dictionary is really large? Actually we can solve this problem from the other
side - traverse all the possible words generated from deletion of the given word.

So for the given word, we try to delete each of the characters and check if the new word
exists in the dictionary. Since we need to quickly check the existence of a work in
dictionary, we need to load the dictionary into a hash set.

So the time complexity for pre-processing is O(M) (traverse the whole dictionary once) and
for the rest of the algorithm is O(2") because we need to get all the possible words
generated from the given word. It’s also worth to note that once the dictionary is loaded,
we don’t need to do the pre-processing again and that’s why sometimes we can ignore the
time spent here.

So which solution is better? It depends on the size of the dictionary and length of the
given word.

Takeaways
To sum up some techniques in this question:

¢ You should be aware of common data structures for dictionary and pros and cons of
each of them.

2

Created with FeedToBook.com - Original source: http://blog.gainlo.co/index.php/category/facebook-interview-questions/feed/

e Given that the size of the dictionary is fixed, it’s not a bad idea to just iterate over it.

¢ Having two indices to traverse/compare two string/arrays is quite common. For
example, we use the same approach to merging two sorted arrays.

You may notice that it’s not easy to write the code for “traverse the word” solution. So
please try to finish the code for this part.

The post Minimum Number of Deletions Of a String appeared first on Gainlo Mock
Interview Blog.

3

Created with FeedToBook.com - Original source: http://blog.gainlo.co/index.php/category/facebook-interview-questions/feed/

http://www.facebook.com/sharer.php?u=http://blog.gainlo.co/index.php/2016/04/29/minimum-number-of-deletions-of-a-string/
http://www.facebook.com/sharer.php?u=http://blog.gainlo.co/index.php/2016/04/29/minimum-number-of-deletions-of-a-string/
http://twitter.com/share?url=http://blog.gainlo.co/index.php/2016/04/29/minimum-number-of-deletions-of-a-string/&text=Minimum+Number+of+Deletions+Of+a+String+
http://twitter.com/share?url=http://blog.gainlo.co/index.php/2016/04/29/minimum-number-of-deletions-of-a-string/&text=Minimum+Number+of+Deletions+Of+a+String+
http://www.linkedin.com/shareArticle?mini=true&url=http://blog.gainlo.co/index.php/2016/04/29/minimum-number-of-deletions-of-a-string/
http://www.linkedin.com/shareArticle?mini=true&url=http://blog.gainlo.co/index.php/2016/04/29/minimum-number-of-deletions-of-a-string/
http://reddit.com/submit?url=http://blog.gainlo.co/index.php/2016/04/29/minimum-number-of-deletions-of-a-string/&title=Minimum%20Number%20of%20Deletions%20Of%20a%20String
http://reddit.com/submit?url=http://blog.gainlo.co/index.php/2016/04/29/minimum-number-of-deletions-of-a-string/&title=Minimum%20Number%20of%20Deletions%20Of%20a%20String
http://blog.gainlo.co/index.php/2016/04/29/minimum-number-of-deletions-of-a-string/
http://blog.gainlo.co
http://blog.gainlo.co

Group Anagrams

This is another post in the coding interview questions collection. In this series, we’ll cover
recent hot questions from top companies like Google, Facebook, Uber, Linkedin etc.. More
importantly, the goal of these posts is not giving you something like a standard answer.

Instead, we focus on telling you how to analyze each question and how to re-use the same
techniques in similar problems. At the end of each post, we’ll summarize some common
strategies used in the question.

In this post, we are going to cover topics including hash map, string manipulation and
sorting as well.

Question

Given a set of random string, write a function that returns a set that groups all the
anagrams together.

For example, suppose that we have the following strings:

nou

“cat”, “dog”, “act”, “door”, “odor”
Then we should return these sets: {“cat”, “act”}, {“dog”}, {“door”, “odor”}.
Few reasons I selected this problem:

¢ It was asked by Facebook a month ago.

e Anagram is a really popular topic in recent interviews.

e Tons of techniques used in this problem can be reused in similar questions.
Again, try to think about this problem before moving on.
Anagram

If you keep following our blog posts, this shouldn’t be the first time you see anagrams. In
question If a String Contains an Anagram of Another String, we also covered this topic and
some techniques will be used here as well.

If you have tried with some examples in this question, you should notice that the key is to
check if two strings are anagram because with this issue solved, you can easily tell which
strings should be grouped together.

To check if two strings are anagram - with same set of characters, one approach is to sort
all characters and then compare if two sorted strings are identical. Since you will need to

4

Created with FeedToBook.com - Original source: http://blog.gainlo.co/index.php/category/facebook-interview-questions/feed/

http://blog.gainlo.co/index.php/2016/05/06/group-anagrams/
https://en.wikipedia.org/wiki/Anagram
http://blog.gainlo.co/index.php/2016/04/08/if-a-string-contains-an-anagram-of-another-string/

output the original string, you may need to keep it together with the sorted string.
Therefore, we have this initial idea:

1. Transform each string to a tuple (sorted string, original string). For instance, “cat”
will be mapped to (“act”, “cat”).

2. Sort all the tuples by the sorted string, thus, anagrams are grouped together.

3. Output original strings if they share the same sorted string.
Optimization

In fact, you will notice that step 2 is not efficient - O(nlogn) time complexity for sorting. In
order to make it in linear time, you can use a hash map whose key is the sorted string and
value is an array of corresponding original strings.

By doing this, you can reduce the time complexity of step 2 to O(N). However, the
downside is that you need more space to store the hash map. Given that in step 1 we
already need extra space (O(N)) for the sorted string, a hash map won'’t change the final
space complexity.

From our previous post, we mentioned about another simple approach to check anagram.
If we map each character to a prime number and the whole string is mapped to the
multiples of all the prime numbers of its characters, anagrams should have the same
multiple. The benefit of this approach is that we can check if two strings are anagrams in
linear time instead of O(MlogM) by sorting (M is the length of a string).

Time space trade-off

This question is a perfect example of time space trade-off. With a hash map, we can reduce
the time complexity to linear, which is true for both the overall grouping and anagram
checking. However, it requires additional space. Without a hash map, we need to do the
sorting, which is slower.

The idea here is that when we want to make the algorithm faster, one direction to think
about is to use additional space. Hash map or hash set are one of the most common data
structures to consider. On the flip side, if we want to reduce usage of memory, we may
consider slower the program.

Takeaways
As before, let’s summarize few techniques we used in this question:

¢ When we need to group similar things together, I expect data structures like hash
map to come to your mind in 1 second. This is commonly used not only in coding

5

Created with FeedToBook.com - Original source: http://blog.gainlo.co/index.php/category/facebook-interview-questions/feed/

http://blog.gainlo.co/index.php/2016/04/08/if-a-string-contains-an-anagram-of-another-string/

interview questions but real life projects as well.
¢ To check anagrams, we can use the prime number approach or sorting.

¢ Time space trade-off is a very common approach when optimizing algorithms.

The post Group Anagrams appeared first on Gainlo Mock Interview Blog.

6

Created with FeedToBook.com - Original source: http://blog.gainlo.co/index.php/category/facebook-interview-questions/feed/

http://www.facebook.com/sharer.php?u=http://blog.gainlo.co/index.php/2016/05/06/group-anagrams/
http://www.facebook.com/sharer.php?u=http://blog.gainlo.co/index.php/2016/05/06/group-anagrams/
http://twitter.com/share?url=http://blog.gainlo.co/index.php/2016/05/06/group-anagrams/&text=Group+Anagrams+
http://twitter.com/share?url=http://blog.gainlo.co/index.php/2016/05/06/group-anagrams/&text=Group+Anagrams+
http://www.linkedin.com/shareArticle?mini=true&url=http://blog.gainlo.co/index.php/2016/05/06/group-anagrams/
http://www.linkedin.com/shareArticle?mini=true&url=http://blog.gainlo.co/index.php/2016/05/06/group-anagrams/
http://reddit.com/submit?url=http://blog.gainlo.co/index.php/2016/05/06/group-anagrams/&title=Group%20Anagrams
http://reddit.com/submit?url=http://blog.gainlo.co/index.php/2016/05/06/group-anagrams/&title=Group%20Anagrams
http://blog.gainlo.co/index.php/2016/05/06/group-anagrams/
http://blog.gainlo.co

Duplicate Elements of An Array

One common misunderstanding is that coding interview is all about solving algorithm
questions. In fact, the answer itself is only part of the evaluation and sometimes it is not
the most important part at all.

There are many other factors being evaluated during an interview. For instance, your
analysis process is at least equally important. More specifically, interviewers care a lot
about how you approach a problem step by step, how you optimize your solution, how you
compare different approaches and so on so forth.

So in this post, we want to focus more on discussion and analysis. You will learn a lot
about what [mean by “solution is not important”. We start with a simple question, but
there are a bunch of follow-up questions after that.

Question

Given an array of string, find duplicate elements.

For instance, in array [“abc”, “dd”, “cc”, “abc”, “123”], the duplicate element is “abc”.
Let’s start with this simple scenario and I'll cover more follow-up questions soon. Also, as
before, we only select questions that are asked by top companies. This one was asked by
Uber, Facebook, Amazon recently.

Solution

I'll skip the O(N"2) brute force solution that you compare each of two strings because it’s
too obvious. One common technique is the trade-off between time and space. Since we
want to make the algorithm faster, we can think of how to use more memory to achieve
this.

I hope when you see “find duplicate”, you can think of hash set immediately since hash is
the most common technique to detect duplicates. If we store every element into a hash set,
we can make it O(N) for both time and space complexity.

File

Let’s extend this question a little bit. What if the array is too large to put in memory?
Apparently, we have to store all those strings in files. Then how can we find duplicate
elements?

Many people have almost no experience with “big data” that cannot fit into memory. But

7

Created with FeedToBook.com - Original source: http://blog.gainlo.co/index.php/category/facebook-interview-questions/feed/

http://blog.gainlo.co/index.php/2016/05/10/duplicate-elements-of-an-array/

no worries, you will see the problem is not as hard as you thought. Let’s think about it in

this way. We can load as many data as possible into memory and find duplicates with the

same approach above, however, the problem is that we can’t compare data from separate
batches. Does this problem sound familiar to you?

Again, I hope you can think about external merge sort, which solves exactly the same
problem. Ok, the most obvious solution is to do an external sort over all the strings and
then we can just compare adjacent strings to find duplicates.

File pivot

There’s another way to do that. Since we can only load limited data into memory, we can
only load strings that are possible to be duplicate. Let’s say we can pick k pivots like quick
sort. Each time, we only load strings that are between [pivot i, pivot i4+1] into memory and
find duplicates if any.

How do we select k? We need to make sure each bucket can fit into memory, otherwise,
we need to divide the bucket into multiple ones.

How do we evaluate the efficiency? Unlike normal big-O analysis, when file operation is
involved, the bottleneck is always how many times of file operations are used. So there’s
no obvious answer which approach is better, as long as you are trying to estimate the
number of file operations, it’s good.

Distributed system

Let’s go one step further. What if the array is too large to store on one machine and
we have to distribute it to multiple nodes? You will see how similar the problem is to
the in-disk version.

We can first sort arrays in each of the machines. Then, we select a master machine and all
the other machines send each string element one by one to the master in order. Thus, the
master machine can easily find duplicate elements. This is exactly the same as the external
merge sorting except it is using network to communicate.

Similarly, we can also split the array into shards and each machine stores one shard. More
specifically, suppose machine k stores strings from “1000” to “5000”, then every other
machine is responsible for sending strings within this range to machine k via network.
Once it’s done, we can just find duplicate strings within a single machine. This is same as
the pivot solution.

Evaluation

How do you evaluate the performance of the algorithm? This is not an easy question since

8

Created with FeedToBook.com - Original source: http://blog.gainlo.co/index.php/category/facebook-interview-questions/feed/

https://en.wikipedia.org/wiki/External_sorting
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Quicksort

in distributed systems there are quite a few factors we need to consider. The basic idea is
that we need to quickly pinpoint the bottleneck. In a single machine, the key is to reduce
the number of file operations. In a distributed system, more often than not the key is to
reduce network requests.

If you can try to estimate the number of network requests needed with some reasonable
assumption, interviewers will be impressed for sure. As you can see, for many interview
questions, there’s no clear answer and even interviewers don’t know the solution. The
point here is that as long as you are trying to solve the problem and provide reasonable
analysis, you will get a good score.

Takeaways

I think the most important takeaway is to know that analysis is way important than the
solution. As an interviewer, I don’t really like to hear answers like “I don’t know”. Instead,
I'd like to see that candidates try hard to figure out the solution and keep telling me what’s
in hid mind.

Besides, all the techniques used here like external merge sort are very common for disk
problems and distributed system problems. You should not be scared when asking what if
we scale this problem to disk or multiple machines.

Another advice is that whenever you solve some questions, try to ask yourself what if we
expand the question to a larger scale.

9

Created with FeedToBook.com - Original source: http://blog.gainlo.co/index.php/category/facebook-interview-questions/feed/

http://www.facebook.com/sharer.php?u=http://blog.gainlo.co/index.php/2016/05/10/duplicate-elements-of-an-array/
http://www.facebook.com/sharer.php?u=http://blog.gainlo.co/index.php/2016/05/10/duplicate-elements-of-an-array/
http://twitter.com/share?url=http://blog.gainlo.co/index.php/2016/05/10/duplicate-elements-of-an-array/&text=Duplicate+Elements+of+An+Array+
http://twitter.com/share?url=http://blog.gainlo.co/index.php/2016/05/10/duplicate-elements-of-an-array/&text=Duplicate+Elements+of+An+Array+
http://www.linkedin.com/shareArticle?mini=true&url=http://blog.gainlo.co/index.php/2016/05/10/duplicate-elements-of-an-array/
http://www.linkedin.com/shareArticle?mini=true&url=http://blog.gainlo.co/index.php/2016/05/10/duplicate-elements-of-an-array/
http://reddit.com/submit?url=http://blog.gainlo.co/index.php/2016/05/10/duplicate-elements-of-an-array/&title=Duplicate%20Elements%20of%20An%20Array

The post Duplicate Elements of An Array appeared first on Gainlo Mock Interview Blog.

10

Created with FeedToBook.com - Original source: http://blog.gainlo.co/index.php/category/facebook-interview-questions/feed/

http://reddit.com/submit?url=http://blog.gainlo.co/index.php/2016/05/10/duplicate-elements-of-an-array/&title=Duplicate%20Elements%20of%20An%20Array
http://blog.gainlo.co/index.php/2016/05/10/duplicate-elements-of-an-array/
http://blog.gainlo.co

11

Created with FeedToBook.com - Original source: http://blog.gainlo.co/index.php/category/facebook-interview-questions/feed/

